PRELIMINARY DATA SHEET

V850E/MS2 ${ }^{\text {TM }}$ 32-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD703130 is a member of the V 850 Family $^{\mathrm{TM}}$ of 32 -bit single-chip microcontrollers designed for real-time control operations. These microcontrollers provide on-chip features, including a 32-bit CPU, RAM, interrupt controller, real-time pulse unit, serial interface, A/D converter, and DMA controller.

The $\mu \mathrm{PD} 703130$ is a ROMless version product.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

$$
\begin{array}{ll}
\text { V850E/MS2 User's Manual Hardware: } & \text { U14985E } \\
\text { V850E/MS1 }{ }^{\text {TM }} \text { User's Manual Architecture: } & \text { U12197E }
\end{array}
$$

FEATURES

- Number of instructions: 81
- Minimum instruction execution time 30 ns (@ 33 MHz operation)
- General-purpose registers 32 bits $\times 32$
- Instruction set suitable for control applications
- Internal memory ROM: None

RAM: 4 KB

- Advanced on-chip interrupt controller
- Real-time pulse unit suitable for control operations
- Powerful serial interface (on-chip dedicated baud rate generator)
- On-chip clock generator
- 10-bit resolution A/D converter: 4 channels
- DMA controller: 4 channels
- Power saving functions

APPLICATIONS

- Optical storage equipment (DVD players, etc.)
- System control for digital consumer equipment, etc.

[^0]
ORDERING INFORMATION

Part Number	Package	Maximum Operating Frequency	Internal ROM
μ PD703130GC-8EU	100-pin plastic LQFP (fine pitch) (14×14)	33 MHz	None

PIN CONFIGURATION (TOP VIEW)

100-pin plastic LQFP (fine pitch) (14×14)

- μ PD703130GC-8EU

PIN NAMES

A0 to A23:	Address bus	P20, P22 to P27:	Port 2
ANIO to ANI3:	Analog input	P33, P34:	Port 3
AVdo:	Analog power supply	P50 to P57:	Port 5
AVRef:	Analog reference voltage	P60 to P67:	Port 6
AVss:	Analog ground	P70 to P73:	Port 7
$\overline{\text { BCYST: }}$	Bus cycle start timing	P80, P83 to P85:	Port 8
CKSEL:	Clock generator operating mode select	P90 to P97:	Port 9
CLKOUT:	Clock output	P100, P102:	Port 10
$\overline{\mathrm{CSO}}, \overline{\mathrm{CS3}}$ to $\overline{\mathrm{CS5}}$:	Chip select	PX6, PX7:	Port X
CVdD:	Clock generator power supply	$\overline{\text { RAS3 }}$ to $\overline{\mathrm{RAS5}}$:	Row address strobe
CVss:	Clock generator ground	$\overline{\mathrm{RD}}$:	Read
D0 to D15:	Data bus	RESET:	Reset
$\overline{\text { DMAAKO }}$ to DMAAK3:	DMA acknowledge	RXD0, RXD1:	Receive data
$\overline{\text { DMARQ0 }}$ to $\overline{\text { DMARQ3: }}$	DMA request	SCK0, $\overline{\text { SCK1 }}$	Serial clock
HLDAK:	Hold acknowledge	SIO, SI1:	Serial input
HLDRQ:	Hold request	SO0, SO1:	Serial output
HVdd:	Power supply for external pins	TCLR10 to TCLR12:	Timer clear
INTP100 to INTP103, :	Interrupt request from peripherals	TI13:	Timer input
INTP110 to INTP113,		TO100, TO110:	Timer output
INTP130		TO120	
IORD:	I/O read strobe	TXD0, TXD1:	Transmit data
IOWR:	I/O write strobe	UCAS:	Upper column address strobe
LCAS:	Lower column address strobe	UWR:	Upper write strobe
LWR:	Lower write strobe	Vod:	Power supply for internal unit
MODE0, MODE2:	Mode	Vss:	Ground
NMI:	Non-maskable interrupt request	WAIT:	Wait
OE:	Output enable	$\overline{\mathrm{WE}}$:	Write enable
P00, P02, P04 to P07:	Port 0	X1, X2:	Crystal
P10, P12, P14 to P17:	Port 1		

INTERNAL BLOCK DIAGRAM

CONTENTS

1. DIFFERENCES BETWEEN V850E/MS2 AND V850E/MS1 6
2. PIN FUNCTIONS 7
2.1 Port Pins 7
2.2 Non-Port Pins 9
2.3 Pin I/O Circuits and Recommended Connection of Unused Pins 11
3. ELECTRICAL SPECIFICATIONS 14
4. PACKAGE DRAWING 68
5. RECOMMENDED SOLDERING CONDITIONS 69

1. DIFFERENCES BETWEEN V850E/MS2 AND V850E/MS1

Product Name Item	V850E/MS2	V850E/MS1	
	$\mu \mathrm{PD} 703130$	μ PD703100-33	μ PD703102-33
Internal ROM	None	None	128 KB (mask ROM)
Maximum operating frequency	33 MHz	33 MHz	
Memory space	64 MB linear (only 22 MB supports on-chip $\overline{\mathrm{CS}}$ signal)	64 MB linear	
Chip select output	4 spaces	8 spaces	
Interrupt function	External: 10, internal: 35	External: 25, interna	
I/O lines	Input: 5, I/O: 52	Input: 9, I/O: 114	
Timer	16-bit timer/event counter: 4 channels 16-bit timer: 2 channels	16-bit timer/event co 16-bit timer: 2 chann	6 channels
Serial interface	CSI/UART: 2 channels Dedicated baud rate generator: 2 channels	CSI: 2 channels CSI/UART: 2 channe Dedicated baud rate	tor: 3 channels
A/D converter	10-bit resolution $\times 4$ channels	10-bit resolution $\times 8$	
Package	100-pin plastic LQFP (fine-pitch) (14×14)	144-pin plastic LQFP	itch) (20×20)
Other	Noise tolerance and noise radiation will differ due to differences in circuit scale and mask layout.		

2. PIN FUNCTIONS

2.1 Port Pins

Pin Name	1/O	Function	Alternate Function
P00	I/O	Port 0 6-bit I/O port Input/output can be specified in 1-bit units.	TO100
P02			TCLR10
P04			INTP100/DMARQ0
P05			INTP101/DMARQ1
P06			INTP102/DMARQ2
P07			INTP103/DMARQ3
P10	I/O	Port 1 6-bit I/O port Input/output can be specified in 1-bit units.	TO110
P12			TCLR11
P14			INTP110/DMAAK0
P15			INTP111/DMAAK1
P16			INTP112/DMAAK2
P17			INTP113/DMAAK3
P20	Input	Port 2 P 20 is an input only port. When a valid edge is input, this pin operates as NMI input. Also, bit 0 of the P2 register indicates the NMI input status. P22 to P27 are 6-bit I/O port. Input/output can be specified in 1-bit units.	NMI
P22	I/O		TXDO/SO0
P23			RXDO/SIO
P24			SCKO
P25			TXD1/SO1
P26			RXD1/SI1
P27			$\overline{\text { SCK1 }}$
P33	I/O	Port 3 2-bit I/O port Input/output can be specified in 1-bit units.	TI13
P34			INTP130
P50 to P57	1/O	Port 5 8-bit I/O port Input/output can be specified in 1-bit units.	D8 to D15
P60 to P67	I/O	Port 6 8-bit I/O port Input/output can be specified in 1-bit units.	A16 to A23
P70 to P73	Input	Port 7 4-bit input only port	ANIO to ANI3
P80	1/0	Port 8 4-bit I/O port Input/output can be specified in 1-bit units.	$\overline{\mathrm{CSO}}$
P83			$\overline{\mathrm{CS3}} / \overline{\mathrm{RAS3}}$
P84			$\overline{\mathrm{CS4}} / \overline{\mathrm{RAS4}} / \overline{\mathrm{OWR}}$
P85			$\overline{\mathrm{CS5}} / \overline{\mathrm{RAS5}} / \overline{\mathrm{ORD}}$

Pin Name	I/O	Function	Alternate Function
P90	I/O	Port 9 8-bit I/O port Input/output can be specified in 1-bit units.	$\overline{\text { LCAS } / 2 \bar{W}}$
P91			$\overline{\text { UCAS/UWR }}$
P92			$\overline{\mathrm{RD}}$
P93			$\overline{\text { WE }}$
P94			BCYST
P95			$\overline{\mathrm{OE}}$
P96			HLDAK
P97			$\overline{\text { HLDRQ }}$
P100	1/0	Port 10 2-bit I/O port Input/output can be specified in 1-bit units.	TO120
P102			TCLR12
PX6	I/O	Port X 2-bit I/O port Input/output can be specified in 1-bit units.	WAIT
PX7			CLKOUT

2.2 Non-Port Pins

Pin Name	I/O	Function	Alternate Function
TO100	Output	Pulse signal output for timers 10 to 12	P00
TO110			P10
TO120			P100
TCLR10	Input	External clear signal input for timers 10 to 12	P02
TCLR11			P12
TCLR12			P102
TI13	Input	External count clock input for timer 13	P33
INTP100	Input	External maskable interrupt request input, shared as external capture trigger input for timer 10	P04/DMARQ0
INTP101			P05/DMARQ1
INTP102			P06/DMARQ2
INTP103			P07/DMARQ3
INTP110	Input	External maskable interrupt request input, shared as external capture trigger input for timer 11	P14/DMAAK0
INTP111			P15/DMAAK1
INTP112			P16/DMAAK2
INTP113			P17/DMAAK3
INTP130	Input	External maskable interrupt request input, shared as external capture trigger input for timer 13	P34
SOO	Output	Serial transmit data output (3-wire) for CSI0 and CSI1	P22/TXD0
SO1			P25/TXD1
SIO	Input	Serial receive data input (3-wire) for CSIO and CSI1	P23/RXD0
SI1			P26/RXD1
$\overline{\text { SCK0 }}$	I/O	Serial clock I/O (3-wire) for CSIO and CSI1	P24
$\overline{\text { SCK1 }}$			P27
TXD0	Output	Serial transmit data output for UART0 and UART1	P22/SO0
TXD1			P25/SO1
RXD0	Input	Serial receive data input for UART0 and UART1	P23/SIO
RXD1			P26/SI1
D0 to D7	I/O	16-bit data bus for external memory	-
D8 to D15			P50 to P57
A0 to A15	Output	24-bit address bus for external memory	-
A16 to A23			P60 to P67
$\overline{\text { LWR }}$	Output	Lower byte write-enable signal output for external data bus	P90/LCAS
$\overline{\text { UWR }}$	Output	Higher byte write-enable signal output for external data bus	P91/UCAS
$\overline{\mathrm{RD}}$	Output	Read strobe signal output for external data bus	P92
$\overline{\text { WE }}$	Output	Write enable signal output for DRAM	P93
$\overline{\mathrm{OE}}$	Output	Output enable signal output for DRAM	P95

Pin Name	1/0	Function	Alternate Function
LCAS	Output	Column address strobe signal output for DRAM's lower data	P90/LWR
$\overline{\text { UCAS }}$	Output	Column address strobe signal output for DRAM's higher data	P91/UWR
$\overline{\text { RAS }}$	Output	Row address strobe signal output for DRAM	P83/ $\overline{\mathrm{CS} 3}$
$\overline{\text { RAS4 }}$			P84/ $\overline{\mathrm{CS}} / \mathrm{/IOWR}$
$\overline{\text { RAS5 }}$			P85/CS5/IORD
$\overline{\text { BCYST }}$	Output	Strobe signal output indicating start of bus cycle	P94
$\overline{\mathrm{CSO}}$	Output	Chip select signal output	P80
$\overline{\text { CS3 }}$			P83/RAS3
$\overline{\text { CS4 }}$			P84/RAS4/IOWR
$\overline{\mathrm{CS5}}$			P85/RAS5/IORD
$\overline{\text { WAIT }}$	Input	Control signal input for inserting waits in bus cycle	PX6
$\overline{\text { IOWR }}$	Output	DMA write strobe signal output	P84/RAS4/ $\overline{\mathrm{CS} 4}$
$\overline{\text { IORD }}$	Output	DMA read strobe signal output	P85/RAS5/CS5
$\frac{\overline{\text { DMARQ0 }} \overline{\text { DMARQ3 }}}{}$	Input	DMA request signal input	P04/INTP100 to P07/INTP103
$\overline{\text { DMAAK0 }}$ to DMAAK3	Output	DMA acknowledge signal output	P14/INTP110 to P17/INTP113
HLDAK	Output	Bus hold acknowledge output	P96
$\overline{\text { HLDRQ }}$	Input	Bus hold request input	P97
ANIO to ANI3	Input	Analog input to A/D converter	P70 to P73
NMI	Input	Non-maskable interrupt request input	P20
CLKOUT	Output	System clock output	PX7
CKSEL	Input	Input for specifying clock generator's operation mode	-
MODEO, MODE2	Input	Specify operation modes	-
RESET	Input	System reset input	-
X1	Input	Connecting resonator for system clock. Input is via X 1 when using an	-
X2	-	external clock.	-
AVREF	Input	Reference voltage input for A/D converter	-
AVdo	-	Positive power supply for A/D converter	-
AVss	-	Ground potential for A/D converter	-
CVdd	-	Positive power supply for dedicated clock generator	-
CVss	-	Ground potential for dedicated clock generator	-
VDD	-	Positive power supply (power supply for internal units)	-
HVdd	-	Positive power supply (power supply for external pins)	-
Vss	-	Ground potential	-

2.3 Pin I/O Circuits and Recommended Connection of Unused Pins

Table 2-1 shows the I/O circuit type of each pin and recommended connection of unused pins. Figure 2-1 shows the various circuit types using partially abridged diagrams.

When connecting to VDD or Vss via a resistor, a resistance value in the range of 1 to $10 \mathrm{k} \Omega$ is recommended.

Table 2-1. I/O Circuit Type of Each Pin and Recommended Connection of Unused Pins (1/2)

Pin	I/O Circuit Type	Recommended Connection of Unused Pins
P00/TO100	5	Input: Independently connect to HVdD or Vss via a resistor Output: Leave open
P02/TCLR10		
P04/INTP100/DMARQ0 to P07/INTP103/DMARQ3		
P10/TO110		
P12/TCLR11		
P14/INTP110/DMAAK0 to P17/INTP113/DMAAK3		
P20/NMI	2	Connect directly to Vss
P22/TXD0/SO0	5	Input: Independently connect to HVdD or Vss via a resistor Output: Leave open
P23/RXD0/SI0		
P24/ $\overline{\text { SCKO }}$		
P25/TXD1/SO1		
P26/RXD1/SI1		
P27/SCK1		
P33/TI13		
P34/INTP130		
P50/D8 to P57/D15		
P60/A16 to P67/A23		
P70/ANI0 to P73/ANI3	9	Connect directly to Vss
$\mathrm{P} 80 / \overline{\mathrm{CSO}}$, to P83/ट53/ $\overline{\mathrm{RAS3}}$	5	Input: Independently connect to HVDD or Vss via a resistor Output: Leave open
P84/ $\overline{\mathrm{CS} 4} / \overline{\mathrm{RAS}} / \overline{\mathrm{IOWR}}$, P85/CS5/RAS5/IORD		
P90/LCAS/LWR		
P91/UCAS/UWR		
P92/RD		
P93/VE		
P94/BCYST		
P95/ $\overline{\mathrm{OE}}$		
P96/HLDAK		
P97/HLDRQ		
P100/TO120		
P102/TCLR12		

Table 2-1. I/O Circuit Type of Each Pin and Recommended Connection of Unused Pins (2/2)

Pin	I/O Circuit Type	Recommended Connection of Unused Pins
PX6/WAIT	5	Input: Independently connect to HVDD or Vss via a resistor Output: Leave open
PX7/CLKOUT		
A0 to A15	4	-
D0 to D7	5	
CKSEL	1	
RESET	2	
MODE0, MODE2		
AVREF, AVss	-	Connect directly to Vss
AVdo	-	Connect directly to HVdo

Figure 2-1. Pin I/O Circuits

Caution Replace Vdd by HVdd when referencing the circuit diagrams shown above.

3. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($\mathrm{TA}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Parameter	Symbol	Condition		Rating	Unit
Power supply voltage	Vdd	Vdd pin		-0.5 to +4.6	V
	HVdd	HVDd pin, $\mathrm{HV}_{\text {do }} \geq \mathrm{V}_{\text {dD }}$		-0.5 to +7.0	V
	CVdd	CVdo pin		-0.5 to +4.6	V
	CVss	CVss pin		-0.5 to +0.5	V
	AVdo	AVdo pin		-0.5 to HVDD $+0.5^{\text {Note }}$	V
	AVss	AVss pin		-0.5 to +0.5	V
Input voltage	V I	Except X 1 pin		-0.5 to HVdd $+0.5^{\text {Note }}$	V
Clock input voltage	Vk	$\mathrm{X} 1, \mathrm{VdD}=3.0$ to 3.6 V		-0.5 to $V_{\text {DD }}+1.0^{\text {Note }}$	V
Output current, low	IoL	1 pin		4.0	mA
		Total of all pins		100	mA
Output current, high	Іон	1 pin		-4.0	mA
		Total of all pins		-100	mA
Output voltage	Vo	HV Dd $=5.0 \mathrm{~V} \pm 10 \%$		-0.5 to HVdd $+0.5^{\text {Note }}$	V
Analog input voltage	Vian	P70/ANI0 to P73 pins	$A V_{D D}>H V_{D D}$	-0.5 to HVDd $+0.5^{\text {Note }}$	V
			$H V_{\text {do }} \geq A V_{\text {do }}$	-0.5 to AVdd $+0.5^{\text {Note }}$	V
A/D converter reference input voltage	AVref	$A V_{D D}>H V_{\text {do }}$		-0.5 to HVdd $+0.5^{\text {Note }}$	V
		HVdd \geq AVdd		-0.5 to $A V_{\text {dD }}+0.5^{\text {Note }}$	V
Operating ambient temperature	TA			-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg			-60 to +150	${ }^{\circ} \mathrm{C}$

Note Be sure not to exceed the absolute maximum ratings (MAX. value) of the each power supply voltage.

Cautions 1. Do not make direct connections of the output (or input/output) pins of the IC product with each other, and also avoid direct connections to Vdd, Vcc, or GND. However, the open drain pins or the open collector pins can be directly connected to each other. A direct connection can also be made for an external circuit designed with timing specifications that prevent conflicting output from pins subject to a high-impedance state.
2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
The ratings and conditions shown below for DC characteristics and AC characteristics are within the range for normal operation and quality assurance.

Capacitance $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{HV} \mathrm{DD}=\mathrm{CV} \mathrm{DD}=\mathrm{Vss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Input capacitance	Cl	$\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V .			15	pF
I/O capacitance	Cıo				15	pF
Output capacitance	Co				15	pF

Operating Conditions

Operation Mode	Internal Operating Clock Frequency (fx)	Operating Ambient Temperature (TA)	Power Supply Voltage (VDD, HVDD)
Direct mode	10 to $33 \mathrm{MHz}^{\text {Note 1 }}$	-40 to $+85^{\circ} \mathrm{C}$	VDD $=3.0$ to 3.6 V,
PLL mode ${ }^{\text {Note 2 }}$	20 to $33 \mathrm{MHz}^{\text {Note 3 }}$	-40 to $+85^{\circ} \mathrm{C}$	$\mathrm{HVDD}=5.0 \mathrm{~V} \pm 10 \%$

Notes 1. Set the input clock frequency used in direct mode to 20 to 66 MHz .
2. The internal operating clock frequency in PLL mode is the value for $5 \times$ operation. When used for $1 \times$ or $1 / 2 \times$ operation as set by the CKDIVn $(n=0,1)$ bit of the CKC register, operation at a frequency of 20 MHz or less is possible.
3. Set the input clock frequency used in PLL mode to 4.0 to 6.6 MHz .

Recommended Oscillator

(a) Ceramic resonator
(i) Murata Mfg. Co., Ltd. $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Note The part number will be changed to the part number in the parentheses from June 2001.

Cautions 1. Connect the oscillator as close to the $X 1$ and $X 2$ pins as possible.

2. Do not wire any other signal lines in the area enclosed by broken lines.
3. Sufficiently evaluate the matching between the μ PD703130 and the resonator.
(ii) $\mathrm{TDK}\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

				$\begin{aligned} & \left\{R_{d}\right. \\ & =\mathrm{C} 2 \end{aligned}$				
Manu- facturer	Part Number	Oscillation Frequency fxx (MHz)	Recommended Circuit Constant			Oscillation Voltage Range		Oscillation Stabilization Time (MAX.) Tost (ms)
			C1 (pF)	C 2 (pF)	$\mathrm{Rd}(\mathrm{k} \Omega)$	MIN. (V)	MAX. (V)	
TDK	FCR4.0MC5	4.0	On-chip	On-chip	0	3.0	3.6	0.73
	FCR5.0MC5	5.0	On-chip	On-chip	0	3.0	3.6	0.68
	FCR6.0MC5	6.0	On-chip	On-chip	0	3.0	3.6	0.58

Cautions 1. Connect the oscillator as closely to the $X 1$ and $X 2$ pins as possible.
2. Do not wire any other signal lines in the area enclosed by broken lines.
3. Sufficiently evaluate the matching between the μ PD703130 and the resonator.
(iii) Kyocera Corporation ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 2 0}$ to $+80^{\circ} \mathrm{C}$)

Cautions 1. Connect the oscillator as close to the $X 1$ and $X 2$ pins as possible.
2. Do not wire any other signal lines in the area enclosed by broken lines.
3. Sufficiently evaluate the matching between the μ PD703130 and the resonator.
(b) External clock input ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$)

Caution Input CMOS-level voltage to the X1 pin.

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, $\mathrm{VdD}=\mathrm{CVDD}=3.0$ to $3.6 \mathrm{~V}, \mathrm{HVDD}=5.0 \pm 10 \%$, $\mathrm{Vss}=0 \mathrm{~V}$)

Parameter		Symbol	Con		MIN.	TYP.	MAX.	Unit	
Input voltage, high		V_{H}	Except Note 1		2.2		HVDD +0.3	V	
		Note 1	0.8 HV DD		HV $\mathrm{DD}+0.3$	V			
Input voltage, low			VIL	Except Note 1 and Note 2		-0.5		+0.8	V
		Note 1		-0.5		0.2 HV DD	V		
Clock input voltage, high		Vxh		X1 pin		0.8 VdD		VDD +0.3	V
Clock input voltage, low		VxL	X1 pin		-0.3		0.15Vdd	V	
Schmitt-triggered input threshold voltage		HVT ${ }^{+}$	Note 1, rising edge			3.0		V	
		HVT ${ }^{-}$	Note 1, falling edge			2.0		V	
Output voltage, high		Vor	$\mathrm{IOH}=-2.5 \mathrm{~mA}$		0.7 HVdo			V	
		$\mathrm{IOH}=-100 \mu \mathrm{~A}$	HVDD - 0.4			V			
Output voltage, low			Vol	$\mathrm{IOL}=2.5 \mathrm{~mA}$				0.45	V
Input leakage current, high		ІІІн	VI = HVDD, except Note 2				10	$\mu \mathrm{A}$	
Input leakage current, low		ILIL	V = 0 V , except Note 2				-10	$\mu \mathrm{A}$	
Output leakage current, high		ILOH	Vo = HVdd				10	$\mu \mathrm{A}$	
Output leakage current, low		ILOL	$\mathrm{Vo}=0 \mathrm{~V}$				-10	$\mu \mathrm{A}$	
Power supply current	Normal mode	IDD1		$\mathrm{V}_{\mathrm{DD}}+\mathrm{CV} \mathrm{V}_{\text {d }}$		$2.0 \times \mathrm{fx}$	$3.0 \times \mathrm{fx}$	mA	
				HVdo		$1.5 \times \mathrm{fx}$	$2.5 \times \mathrm{fx}$	mA	
	HALT mode	IDD2		$V_{D D}+C V_{D D}$		$1.4 \times \mathrm{fx}$	$1.8 \times \mathrm{fx}$	mA	
				HVdd		$0.7 \times \mathrm{fx}$	$1.2 \times \mathrm{fx}$	mA	
	IDLE mode	IDD3		$V_{D D}+C V_{D D}$		1.4	2.5	mA	
				HVdo		20	100	$\mu \mathrm{A}$	
	$\begin{aligned} & \text { STOP } \\ & \text { mode } \end{aligned}$	IDD4		$V_{D D}+C V_{\text {dD }}$		20	100	$\mu \mathrm{A}$	
				HVdo		10	50	$\mu \mathrm{A}$	

Notes 1. P20/NMI, MODE0, MODE2, CKSEL, $\overline{R E S E T}$
2. When the P70/ANI0 to P73/ANI3 pins are used as analog input.

Remarks 1. TYP. values are reference values for when $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V} D=\mathrm{CV} D \mathrm{D}=3.3 \mathrm{~V}$, and $\mathrm{HV} D \mathrm{D}=5.0 \mathrm{~V}$.
2. Direct mode: $\mathrm{fx}=10$ to 33 MHz

PLL mode: $\mathrm{fx}=20$ to 33 MHz
3. The unit for fx is MHz .

Data Hold Characteristics ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Data hold voltage	Vdddr	STOP mode, VDD = VdDDR	1.5		3.6	V
	HVDDDR	STOP mode, HVDD $=$ HVDDDR	VDDDR		5.5	V
Data hold current	IDDDR	VDD $=$ VDDDR		30	150	$\mu \mathrm{A}$
Power supply voltage rise time	tRVD		200			$\mu \mathrm{s}$
Power supply voltage fall time	tFVD		200			$\mu \mathrm{s}$
Power supply voltage hold time (from STOP mode setting)	thvD		0			ms
STOP mode release signal input time	tDREL		0			ns
Data hold input voltage, high	VIHDR	P20/NMI, MODEO, MODE2, CKSEL, RESET	0.8HVdDDR		HVdDDR	V
Data hold input voltage, low	VILDR	P20/NMI, MODEO, MODE2, CKSEL, RESET	0		0.2HVDDDR	V

Remark TYP. values are reference values for when $T_{A}=25^{\circ} \mathrm{C}$.

AC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, $\mathrm{VDD}=\mathrm{CVDD}=3.0$ to $3.6 \mathrm{~V}, \mathrm{HVDD}=5.0 \pm 10 \%$, $\mathrm{Vss}=0 \mathrm{~V}$, output pin load capacitance: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$)

AC Test Input Test Points
(a) P20/NMI, MODE0, MODE2, CKSEL, RESET
Input signal
(b) Pins other than those listed in (a) above

AC Test Output Test Points

Load Condition

Caution In cases where the load capacitance is greater than 50 pF due to the circuit configuration, insert a buffer or other element to reduce the device's load capacitance 50 pF .

(1) Clock timing

Parameter	Symbol		Condition	MIN.	MAX.	Unit
X1 input cycle	<1>	tcrx	Direct mode	15	50	ns
			PLL mode	150	250	ns
X1 input high-level width	<2>	twxH	Direct mode	5		ns
			PLL mode	50		ns
X1 input low-level width	<3>	twxL	Direct mode	5		ns
			PLL mode	50		ns
X1 input rise time	<4>	txR	Direct mode		4	ns
			PLL mode		10	ns
X1 input fall time	<5>	txF	Direct mode		4	ns
			PLL mode		10	ns
CLKOUT output cycle	<6>	tсүк		30	100	ns
CLKOUT high-level width	<7>	twкн		0.5T-7		ns
CLKOUT low-level width	<8>	twkL		0.5T-4		ns
CLKOUT rise time	<9>	tkr			5	ns
CLKOUT fall time	<10>	tkF			5	ns

Remark $\mathrm{T}=\mathrm{tc} \mathrm{Y} \mathrm{k}$

CLKOUT (Output)

(2) Output waveform (other than X1, CLKOUT)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
Output rise time	$<12>$	tor			10	ns
Output fall time	$<13>$	tof			10	ns

(3) Reset timing

Parameter	Symbol		Condition	MIN.	MAX.	Unit
$\overline{\text { RESET high-level width }}$	$<14>$	twRsH		500		ns
$\overline{\text { RESET low-level width }}$	$<15>$	twRSL	When power supply is on, and STOP mode has been released	$500+$ Tos		ns
		Other than when power supply is on, and STOP mode has been released	500	ns		

Remark Tos: Oscillation stabilization time

(4) SRAM, external ROM, or external I/O access timing
(a) Access timing (SRAM, external ROM, or external I/O) (1/2)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
Address, $\overline{\mathrm{CSn}}$ output delay time (from CLKOUT \downarrow)	<16>	toka		2	10	ns
Address, $\overline{\mathrm{CSn}}$ output hold time (from CLKOUT \downarrow)	<17>	tНка		2	10	ns
$\overline{\mathrm{RD}}, \overline{\mathrm{IORD}} \downarrow$ delay time (from CLKOUT \uparrow)	<18>	tokrol		2	14	ns
$\overline{\mathrm{RD}}, \overline{\mathrm{IORD}} \uparrow$ delay time (from CLKOUT \uparrow)	<19>	tHKRDH		2	14	ns
$\overline{\mathrm{UWR}}, \overline{\mathrm{LWR}}, \overline{\mathrm{IOWR}} \downarrow$ delay time (from CLKOUT \uparrow)	<20>	tokwrL		2	10	ns
$\overline{\text { UWR, }}, \overline{\mathrm{LWR}}, \overline{\mathrm{IOWR}} \uparrow$ delay time (from CLKOUT \uparrow)	<21>	thkwrh		2	10	ns
$\overline{\mathrm{BCYST}} \downarrow$ delay time (from CLKOUT $\downarrow)$	<22>	tokest		2	10	ns
$\overline{\mathrm{BCYST}} \uparrow$ delay time (from CLKOUT $\downarrow)$	<23>	tHKBSH		2	10	ns
$\overline{\text { WAIT }}$ setup time (to CLKOUT \downarrow)	<24>	tswk		15		ns
$\overline{\text { WAIT }}$ hold time (from CLKOUT \downarrow)	<25>	thкw		2		ns
Data input setup time (to CLKOUT \uparrow)	<26>	tskid		18		ns
Data input hold time (from CLKOUT \uparrow)	<27>	tнкıD		2		ns
Data output delay time (from CLKOUT \downarrow)	<28>	tokod		2	10	ns
Data output hold time (from CLKOUT \downarrow)	<29>	tнкод		2	10	ns

Remarks 1. Maintain at least one of the data input hold times thKid and thrDid.
2. $n=0,3$ to 5
(a) Access timing (SRAM, external ROM, or external I/O) (2/2)

Remarks 1. This is the timing when the number of waits due to the DWC1 and DWC2 registers is zero.
2. The broken lines indicate high impedance.
3. $n=0,3$ to 5
(b) Read timing (SRAM, external ROM, or external I/O) (1/2)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
Data input setup time (to address)	<30>	tsald			$(1.5+w D+w) T-28$	ns
Data input setup time (to $\overline{\mathrm{RD}}$)	<31>	tsroid			$(1+w d+w) T-32$	ns
$\overline{\mathrm{RD}}$, $\overline{\text { IORD }}$ low-level width	<32>	twrdL		$\left(1+w_{0}+w\right) T-10$		ns
$\overline{\mathrm{RD}}, \overline{\text { IORD }}$ high-level width	<33>	twroh		T-10		ns
Delay time from address, $\overline{\mathrm{CSn}}$ to $\overline{\mathrm{RD}}$, IORD \downarrow	<34>	tdard		0.5T-10		ns
Delay time from $\overline{R D}, \overline{\mathrm{IORD}} \uparrow$ to address	<35>	torda		$(0.5+i) T-10$		ns
Data input hold time (from $\overline{\mathrm{RD}}, \overline{\mathrm{ORD}} \uparrow$)	<36>	throid		0		ns
Delay time from $\overline{R D}, \overline{\text { IORD } \uparrow \text { to data }}$ output	<37>	tordod		$(0.5+i) T-10$		ns
$\overline{\text { WAIT }}$ setup time (to address)	<38>	tsaw	Note		T-25	ns
$\overline{\text { WAIT }}$ setup time (to $\overline{\text { BCYST }} \downarrow$)	<39>	tsbsw	Note		T-25	ns
$\overline{\text { WAIT }}$ hold time (from $\overline{\text { BCYST } \uparrow \text {) }}$	<40>	thbsw	Note	0		ns

Note For first WAIT sampling when the number of waits due to the DWC1 and DWC2 registers is zero.

Remarks 1. $\mathrm{T}=\mathrm{tcyk}$
2. w : The number of waits due to $\overline{\text { WAIT. }}$
3. wD: The number of waits due to the DWC1 and DWC2 registers.
4. i: The number of idle states that are inserted when a write cycle follows a read cycle.
5. Maintain at least one of the data input hold times, thkid or throid.
6. $\mathrm{n}=0,3$ to 5
(b) Read timing (SRAM, external ROM, or external I/O) (2/2)

Remarks 1. This is the timing when the number of waits due to the DWC1 and DWC2 registers is zero.
2. The broken lines indicate high impedance.
3. $n=0,3$ to 5
(c) Write timing (SRAM, external ROM, or external I/O) (1/2)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
WAIT setup time (to address)	<38>	tsaw	Note		T-25	ns
$\overline{\text { WAIT }}$ setup time (to $\overline{\text { BCYST }} \downarrow$)	<39>	tsbsw	Note		T-25	ns
$\overline{\text { WAIT }}$ hold time (from $\overline{\text { BCYST }} \uparrow$)	<40>	thbsw	Note	0		ns
Delay time from address, $\overline{\mathrm{CSn}}$ to $\overline{\text { UWR }}, \overline{\text { LWR }}, \overline{I O W R} \downarrow$	<41>	tdawr		0.5T-10		ns
Address setup time (to $\overline{\mathrm{UWR}}, \overline{\mathrm{LWR}}$, $\overline{\text { IOWR }} \uparrow$)	<42>	tsawr		$(1.5+w D+w) T-10$		ns
Delay time from $\overline{\text { UWR }, ~} \overline{\mathrm{LWR}}, \overline{\mathrm{IOWR}} \uparrow$ to address	<43>	towra		0.5T-10		ns
$\overline{\text { UWR, }}$, $\overline{L W R}$, IOWR high-level width	<44>	twwRH		T-10		ns
$\overline{\text { UWR, }}$, $\overline{L W R}, \overline{\text { IOWR }}$ low-level width	<45>	twwRL		$(1+w D+w) T-10$		ns
Data output setup time (to UWR, LWR, IOWR \uparrow)	<46>	tsodwr		$(1.5+w D+w) T-10$		ns
Data output hold time (from UWR, $\overline{L W R}, \overline{I O W R} \uparrow$)	<47>	thwrod		0.5T-10		ns

Note For first $\overline{\text { WAIT }}$ sampling when the number of waits due to the DWC1 and DWC2 registers is zero.

Remarks 1. $\mathrm{T}=\mathrm{tc} \mathrm{Yk}$
2. w : The number of waits due to $\overline{\text { WAIT. }}$
3. wD: The number of waits due to the DWC1 and DWC2 registers.
4. $\mathrm{n}=0,3$ to 5
(c) Write timing (SRAM, external ROM, or external I/O) (2/2)

Remarks 1. This is the timing when the number of waits due to the DWC1 and DWC2 registers is zero.
2. The broken lines indicate high impedance.
3. $n=0,3$ to 5
(d) DMA flyby transfer timing (SRAM \rightarrow external I/O transfer) (1/2)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
$\overline{\text { WAIT }}$ setup time (to CLKOUT \downarrow)	<24>	tswk		15		ns
$\overline{\text { WAIT }}$ hold time (from CLKOUT \downarrow)	<25>	thkw		2		ns
$\overline{\mathrm{RD}}$ low-level width	<32>	twRDL		$\begin{gathered} \left(1+W_{D}+W_{F}+w\right) T \\ -10 \end{gathered}$		ns
$\overline{\mathrm{RD}}$ high-level width	<33>	twrde		T-10		ns
Delay time from address, $\overline{\mathrm{CSn}}$ to $\overline{\mathrm{RD}} \downarrow$	<34>	tbard		0.5T-10		ns
Delay time from $\overline{\mathrm{RD}} \uparrow$ to address	<35>	tDRDA		$(0.5+i) T-10$		ns
Delay time from $\overline{\mathrm{RD}} \uparrow$ to data output	<37>	tordod		$(0.5+i) T-10$		ns
$\overline{\text { WAIT }}$ setup time (to address)	<38>	tsaw	Note		T-25	ns
$\overline{\text { WAIT }}$ setup time (to $\overline{\text { BCYST }} \downarrow$)	<39>	tsbsw	Note		T-25	ns
$\overline{\text { WAIT }}$ hold time (from $\overline{\text { BCYST }} \uparrow$)	<40>	thbsw	Note	0		ns
Delay time from address to $\overline{\mathrm{IOWR}} \downarrow$	<41>	tdawr		0.5T-10		ns
Address setup time (to $\overline{\mathrm{IOWR}} \uparrow$)	<42>	tsawr		$(1.5+w D+w) T-10$		ns
Delay time from $\overline{\mathrm{IOWR}} \uparrow$ to address	<43>	tDWRA		0.5T-10		ns
$\overline{\text { IOWR }}$ high-level width	<44>	twWRH		T-10		ns
$\overline{\text { IOWR }}$ low-level width	<45>	twwRL		$(1+w D+w) T-10$		ns
Delay time from $\overline{\mathrm{IOWR}} \uparrow$ to $\overline{\mathrm{RD}} \uparrow$	<48>	towrrd	$W_{F}=0$	0		ns
			$W_{F}=1$	T-10		ns
Delay time from $\overline{\text { DMAAKm }} \downarrow$ to $\overline{\mathrm{IOWR}} \downarrow$	<49>	todawr		0.5T-10		ns
Delay time from $\overline{\mathrm{IOWR}} \uparrow$ to $\overline{\text { DMAAKm }} \uparrow$	<50>	towrda		(0.5 + WF) T - 10		ns

Note For first $\overline{\text { WAIT }}$ sampling when the number of waits due to the DWC1 and DWC2 registers is zero.

Remarks 1. $\mathrm{T}=\mathrm{tc} \mathrm{Yk}$
2. w : The number of waits due to $\overline{\text { WAIT. }}$
3. wD: The number of waits due to the DWC1 and DWC2 registers.
4. WF: The number of waits that are inserted for a source-side access during a DMA flyby transfer.
5. i: The number of idle states that are inserted when a write cycle follows a read cycle.
6. $n=0,3$ to $5, m=0$ to 3
(d) DMA flyby transfer timing (SRAM \rightarrow external I/O transfer) (2/2)

Remarks 1. This is the timing when the number of waits due to the DWC1 and DWC2 registers is zero and wF $=0$.
2. The broken lines indicate high impedance.
3. $n=0,3$ to $5, m=0$ to 3
(e) DMA flyby transfer timing (external I/O \rightarrow SRAM transfer) (1/2)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
WAIT setup time (to CLKOUT \downarrow)	<24>	tswk		15		ns
$\overline{\text { WAIT }}$ hold time (from CLKOUT \downarrow)	<25>	thkw		2		ns
$\overline{\text { IORD low-level width }}$	<32>	twrdL		$\begin{gathered} \left(1+W_{D}+W_{F}+w\right) T \\ -10 \end{gathered}$		ns
$\overline{\text { IORD }}$ high-level width	<33>	twroh		T-10		ns
Delay time from address, $\overline{\mathrm{CSn}}$ to IORD \downarrow	<34>	ttard		0.5T-10		ns
Delay time from $\overline{\mathrm{IORD}} \uparrow$ to address	<35>	torda		$(0.5+\mathrm{i}) \mathrm{T}-10$		ns
Delay time from $\overline{\mathrm{IORD}} \uparrow$ to data output	<37>	tordod		$(0.5+\mathrm{i}) \mathrm{T}-10$		ns
$\overline{\text { WAIT setup time (to address) }}$	<38>	tsaw	Note		T-25	ns
	<39>	tsssw	Note		T-25	ns
$\overline{\text { WAIT }}$ hold time (from $\overline{\text { BCYST }} \uparrow$)	<40>	thbsw	Note	0		ns
Delay time from address to UWR, $\overline{\text { LWR }} \downarrow$	<41>	toawr		0.5T-10		ns
Address setup time (to $\overline{\mathrm{UWR}}, \overline{\mathrm{LWR}} \uparrow$)	<42>	tsawr		$(1.5+w D+w) T-10$		ns
Delay time from $\overline{U W R}, \overline{\text { LWR }}$ to address	<43>	towrA		0.5T-10		ns
$\overline{\text { UWR, }}$, LWR high-level width	<44>	twwRH		T-10		ns
$\overline{\text { UWR, }}$, LWR low-level width	<45>	twwRL		$(1+w D+w) T-10$		ns
	<48>	towrrd	$\mathrm{WF}=0$	0		ns
			$\mathrm{WF}_{\mathrm{F}}=1$	T-10		ns
Delay time from $\overline{\text { DMAAKm }} \downarrow$ to $\overline{\text { IORD }} \downarrow$	<51>	todard		0.5T-10		ns
Delay time from $\overline{\overline{O R D}} \uparrow$ to $\overline{\text { DMAAKm }} \uparrow$	<52>	tordoa		0.5T-10		ns

Note For first $\overline{\text { WAIT }}$ sampling when the number of waits due to the DWC1 and DWC2 registers is zero.

Remarks 1. $\mathrm{T}=\mathrm{t} \mathrm{t} \mathrm{Yk}$
2. w : The number of waits due to $\overline{\text { WAIT. }}$
3. wD: The number of waits due to the DWC1 and DWC2 registers.
4. W_{F} : The number of waits that are inserted for a source-side access during a DMA flyby transfer.
5. i: The number of idle states that are inserted when a write cycle follows a read cycle.
6. $n=0,3$ to $5, m=0$ to 3
(e) DMA flyby transfer timing (external I/O \rightarrow SRAM transfer) (2/2)

Remarks 1. This is the timing when the number of waits due to the DWC1 and DWC2 registers is zero and WF $=0$.
2. The broken lines indicate high impedance.
3. $\mathrm{n}=0,3$ to $5, \mathrm{~m}=0$ to 3

(5) Page ROM access timing (1/2)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
WAIT setup time (to CLKOUT \downarrow)	<24>	tswk		15		ns
$\overline{\text { WAIT }}$ hold time (from CLKOUT \downarrow)	<25>	thkw		2		ns
Data input setup time (to CLKOUT \uparrow)	<26>	tskid		18		ns
Data input hold time (from CLKOUT \uparrow)	<27>	tHKID		2		ns
Off-page data input setup time (to address)	<30>	tsald			$(1.5+w D+w) T-28$	ns
Off-page data input setup time (to $\overline{\mathrm{RD}}$)	<31>	tsroid			$\left(1+w_{D}+w\right) T-32$	ns
Off-page $\overline{\mathrm{RD}}$ low-level width	<32>	twrdL		$(1+w D+w) T-10$		ns
$\overline{\mathrm{RD}}$ high-level width	<33>	twroh		0.5T-10		ns
Data input hold time (from $\overline{\mathrm{RD}}$)	<36>	throid		0		ns
Delay time from $\overline{\mathrm{RD}} \uparrow$ to data output	<37>	tordod		$(0.5+i) T-10$		ns
On-page $\overline{\mathrm{RD}}$ low-level width	<53>	twordi		$\begin{gathered} (1.5+w P R+w) T \\ -10 \end{gathered}$		ns
On-page data input setup time (to address)	<54>	tsoald			$\left(1.5+\mathrm{WPR}^{+} \mathrm{w}\right) \mathrm{T}-28$	ns
On-page data input setup time (to $\overline{\mathrm{RD}}$)	<55>	tsordio			$(1.5+$ WPR +w$) \mathrm{T}-32$	ns

Remarks 1. $\mathrm{T}=\mathrm{tc} \mathrm{Y} \mathrm{k}$
2. w : The number of waits due to $\overline{\text { WAIT }}$.
3. wD: The number of waits due to the DWC1 and DWC2 registers.
4. WPR: The number of waits due to the PRC register.
5. i: The number of idle states that are inserted when a write cycle follows a read cycle.
6. Maintain at least one of the data input hold times, thkid or thrdid.

(5) Page ROM access timing (2/2)

$\overline{\text { BCYST }}$ (Output)

Note On-page and off-page addresses are as follows.

PRC Register			On-page Addresses	Off-page Addresses
MA5	MA4	MA3		
0	0	0	A0, A1	A2 to A23
0	0	1	A0 to A2	A3 to A23
0	1	1	A0 to A3	A4 to A23
1	1	1	A0 to A4	A5 to A23

Remarks 1. This is the timing for the following case.
Number of waits due to the DWC1 and DWC2 registers (TDW): 1
Number of waits due to the PRC register (TPRW): 1
2. The broken lines indicate high impedance.
3. $n=0,3$ to 5

(6) DRAM access timing

(a) Read timing (high-speed page DRAM access, normal access: off-page) (1/3)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
$\overline{\text { WAIT }}$ setup time (to CLKOUT \downarrow)	<24>	tswk		15		ns
$\overline{\text { WAIT }}$ hold time (from CLKOUT \downarrow)	<25>	thkw		2		ns
Data input setup time (to CLKOUT \uparrow)	<26>	tskid		18		ns
Data input hold time (from CLKOUT \uparrow)	<27>	tHKıD		2		ns
Delay time from $\overline{\mathrm{OE}} \uparrow$ to data output	<37>	tordod		$(0.5+\mathrm{i}) \mathrm{T}-10$		ns
Row address setup time	<56>	tasr		$(0.5+$ WRP $)$ T - 10		ns
Row address hold time	< $57>$	trah		$(0.5+$ WRн $)$ T - 10		ns
Column address setup time	<58>	tasc		0.5T-10		ns
Column address hold time	<59>	tcah		$(1.5+W D A+w) T-10$		ns
Read/write cycle time	<60>	trc		$\begin{gathered} \left(3+W_{R P}+W_{R H}+W_{D A}+w\right) T \\ -10 \end{gathered}$		ns
$\overline{\mathrm{RAS}}$ precharge time	<61>	tRP		$(0.5+$ WRP $)$ T - 10		ns
$\overline{\mathrm{RAS}}$ pulse time	<62>	tras		$\begin{gathered} \left(2.5+W_{R H}+W D A+w\right) T \\ -10 \end{gathered}$		ns
$\overline{\mathrm{RAS}}$ hold time	<63>	trsh		$(1.5+W D A+w) T-10$		ns
Column address read time for $\overline{\text { RAS }}$	<64>	$t_{\text {RaL }}$		$(2+$ WDA +w$) \mathrm{T}-10$		ns
$\overline{\mathrm{CAS}}$ pulse width	<65>	tcas		$(1+W D A+w) T-10$		ns
$\overline{\mathrm{CAS}}$ - $\overline{\mathrm{RAS}}$ precharge time	<66>	tcre		$(1+\mathrm{WRP}) \mathrm{T}-10$		ns
$\overline{\mathrm{CAS}}$ hold time	<67>	tcser		$\begin{gathered} (2+w R H+w D A+w) T \\ -10 \end{gathered}$		ns
$\overline{\text { WE }}$ setup time	<68>	trcs		$(2+$ WRP + WRH) T - 10		ns
$\overline{\mathrm{WE}}$ hold time (from $\overline{\mathrm{RAS}} \uparrow$)	<69>	trRH		0.5T-10		ns
$\overline{\text { WE }}$ hold time (from $\overline{\mathrm{CAS}} \uparrow$)	<70>	trch		T-10		ns
$\overline{\mathrm{CAS}}$ precharge time	<71>	tcPN		$(2+$ WRP + WRH)T - 10		ns
Output enable access time	<72>	toea			$\begin{gathered} \left(2+W_{R P}+w_{R H}+W_{D A}+w\right) T \\ -28 \end{gathered}$	ns
$\overline{\text { RAS }}$ access time	<73>	trac			$\begin{gathered} \left(2+w_{R H}+w_{D A}+w\right) T \\ -28 \end{gathered}$	ns
Access time from column address	<74>	$t_{\text {A }}$			$(1.5+W D A+w) T-28$	ns
$\overline{\text { CAS }}$ access time	<75>	tcac			$(1+W D A+w) T-28$	ns

Remarks 1. $\mathrm{T}=\mathrm{tc} \mathrm{Yk}$
2. w : The number of waits due to $\overline{\text { WAIT. }}$
3. WRP: The number of waits due to the RPCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
4. WRH: The number of waits due to the RHCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
5. WDA: The number of waits due to the DACxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
6. i: The number of idle states that are inserted when a write cycle follows a read cycle.
(a) Read timing (high-speed page DRAM access, normal access: off-page) (2/3)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
$\overline{\text { RAS column address delay time }}$	<76>	trad		(0.5 + WRH) ${ }^{\text {- }}$ - 10		ns
RAS-CAS delay time	<77>	trcd		$\left(1+\right.$ wRH $^{\text {e }}$) -10		ns
Output buffer turn-off delay time (from $\overline{\mathrm{OE}} \uparrow$)	<78>	toez		0		ns
Output buffer turn-off delay time (from CAS \uparrow)	<79>	toff		0		ns

Remarks 1. $\mathrm{T}=\mathrm{t} \mathrm{t} \mathrm{Yk}$
2. WRH: The number of waits due to the RHCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
(a) Read timing (high-speed page DRAM access, normal access: off-page) (3/3)

Remarks 1. This is the timing for the following case ($n=0$ to $3, x x=00$ to 03,10 to 13).
Number of waits due to the RPCxx bit of the DRCn register (TRPW): 1
Number of waits due to the RHCxx bit of the DRCn register (TRHW): 1
Number of waits due to the DACxx bit of the DRCn register (TDAW): 1
2. The broken lines indicate high impedance.
3. $\mathrm{n}=3$ to 5
(b) Read timing (high-speed page DRAM access: on-page) (1/2)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
Data input setup time (to CLKOUT \uparrow)	<26>	tskid		18		ns
Data input hold time (from CLKOUT \uparrow)	<27>	thkid		2		ns
Delay time from $\overline{\mathrm{OE}} \uparrow$ to data output	<37>	tordod		$(0.5+\mathrm{i}) \mathrm{T}-10$		ns
Column address setup time	<58>	tasc		$(0.5+$ WCP) $T-10$		ns
Column address hold time	<59>	tcah		$(1.5+$ WDA $) T-10$		ns
$\overline{\mathrm{RAS}}$ hold time	<63>	trsh		$(1.5+$ WDA $) T-10$		ns
Column address read time for $\overline{\mathrm{RAS}}$	<64>	tral		$(2+W C P+W D A) T-10$		ns
$\overline{\mathrm{CAS}}$ pulse width	<65>	tcas		$(1+$ WDA $) T-10$		ns
$\overline{\text { WE }}$ setup time (to $\overline{\mathrm{CAS}} \downarrow$)	<68>	trcs		$(1+\mathrm{WCP}) \mathrm{T}-10$		ns
$\overline{\mathrm{WE}}$ hold time (from $\overline{\mathrm{RAS}} \uparrow$)	<69>	trRH		0.5T-10		ns
$\overline{\mathrm{WE}}$ hold time (from $\overline{\mathrm{CAS}} \uparrow$)	<70>	trch		T-10		ns
Output enable access time	<72>	toea			$(1+W C P+W D A) T-28$	ns
Access time from column address	<74>	tAA			$(1.5+W C P+W D A) T-28$	ns
$\overline{\text { CAS }}$ access time	<75>	tcac			$(1+\mathrm{wDA}) \mathrm{T}-28$	ns
Output buffer turn-off delay time (from $\overline{\mathrm{OE}} \uparrow$)	<78>	toez		0		ns
Output buffer turn-off delay time (from $\overline{\mathrm{CAS}} \uparrow$)	<79>	toff		0		ns
Access time from $\overline{\mathrm{CAS}}$ precharge	<80>	tACP			$(2+W C P+W D A) T-28$	ns
$\overline{\mathrm{CAS}}$ precharge time	<81>	tcP		$(1+\mathrm{wCP}) \mathrm{T}-10$		ns
High-speed page mode cycle time	<82>	tpc		$(2+\mathrm{WCP}+\mathrm{WDA}) \mathrm{T}-10$		ns
$\overline{\mathrm{RAS}}$ hold time for $\overline{\mathrm{CAS}}$ precharge	<83>	$t_{\text {RHCP }}$		$(2.5+W C P+W D A) T-10$		ns

Remarks 1. $\mathrm{T}=\mathrm{t} \mathrm{t} \mathrm{Y} \mathrm{k}$
2. wCP : The number of waits due to the CPCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
3. WDA: The number of waits due to the DACxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
4. i: The number of idle states that are inserted when a write cycle follows a read cycle.
(b) Read timing (high-speed page DRAM access: on-page) (2/2)

(c) Write timing (high-speed page DRAM access, normal access: off-page) (1/2)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
$\overline{\text { WAIT }}$ setup time (to CLKOUT \downarrow)	<24>	tswk		15		ns
$\overline{\text { WAIT }}$ hold time (from CLKOUT \downarrow)	<25>	thkw		2		ns
Row address setup time	<56>	tasR		$\left(0.5+W_{R P}\right) T-10$		ns
Row address hold time	<57>	trat		$(0.5+$ WRH $)$ T - 10		ns
Column address setup time	<58>	tasc		0.5T-10		ns
Column address hold time	<59>	tcah		$(1.5+W D A+w) T-10$		ns
Read/write cycle time	<60>	trc		$\left\lvert\, \begin{gathered} \left(3+W_{R P}+w_{R H}+W_{D A}+w\right) T \\ -10 \end{gathered}\right.$		ns
$\overline{\text { RAS }}$ precharge time	<61>	tRP		$(0.5+$ WRP $) T-10$		ns
$\overline{\mathrm{RAS}}$ pulse time	<62>	tras		$\left\|\begin{array}{c} (2.5+\text { WRH }+ \text { WDA }+w) T \\ -10 \end{array}\right\|$		ns
$\overline{\mathrm{RAS}}$ hold time	<63>	trsh		$(1.5+W D A+w) T-10$		ns
Column address read time (from $\overline{\mathrm{RAS}} \uparrow$)	<64>	tral		$(2+$ WDA +w$) \mathrm{T}-10$		ns
$\overline{\mathrm{CAS}}$ pulse width	<65>	tcas		$(1+\mathrm{WDA}+\mathrm{w}) \mathrm{T}-10$		ns
$\overline{\mathrm{CAS}}-\overline{\mathrm{RAS}}$ precharge time	<66>	tcre		$(1+$ WRH $)$ T - 10		ns
$\overline{\mathrm{CAS}}$ hold time	<67>	tcsi		$\begin{gathered} \left(2+W_{R H}+w D A+w\right) T \\ -10 \end{gathered}$		ns
$\overline{\text { CAS }}$ precharge time	<71>	tcPN		$\left(2+W_{R P}+W_{R H}\right) T-10$		ns
$\overline{\text { RAS }}$ column address delay time	<76>	trad		$(0.5+$ WRн $)$ T - 10		ns
$\overline{\text { RAS }}$-CAS delay time	<77>	trci		$(1+$ WRH $)$ T - 10		ns
$\overline{\text { WE }}$ setup time (to $\overline{\mathrm{CAS}} \downarrow$)	<84>	twcs		$\begin{gathered} \left(1+w_{R P}+w_{R H}\right) T \\ -10 \end{gathered}$		ns
$\overline{\text { WE }}$ hold time (from $\overline{\text { CAS }} \downarrow$)	<85>	twch		$(1+w D A+w) T-10$		ns
Data setup time (to $\overline{\mathrm{CAS}} \downarrow$)	<86>	tos		$\left(1.5+W_{R P}+W_{R H}\right) T-10$		ns
Data hold time (from $\overline{\text { CAS }} \downarrow$)	<87>	tDH		$(1.5+W D A+w) T-10$		ns

Remarks 1. $\mathrm{T}=\mathrm{tc} \mathrm{Yk}$
2. w : The number of waits due to $\overline{\text { WAIT. }}$
3. WRP: The number of waits due to the RPCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
4. WRH: The number of waits due to the RHCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
5. WDA: The number of waits due to the DACxx bit of the DRCn register ($\mathrm{n}=0$ to $3, \mathrm{xx}=00$ to 03,10 to 13).
(c) Write timing (high-speed page DRAM access, normal access: off-page) (2/2)

Remarks 1. This is the timing for the following case ($n=0$ to 3 , $x x=00$ to 03,10 to 13).
Number of waits due to the RPCxx bit of the DRCn register (TRPW): 1
Number of waits due to the RHCxx bit of the DRCn register (TRHW): 1
Number of waits due to the DACxx bit of the DRCn register (TDAW): 1
2. The broken lines indicate high impedance.
3. $\mathrm{n}=3$ to 5
(d) Write timing (high-speed page DRAM access: on-page) (1/2)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
Column address setup time	<58>	tasc		(0.5 + WCP) T - 10		ns
Column address hold time	<59>	tcar		$(1.5+$ WDA $)$ T - 10		ns
$\overline{\mathrm{RAS}}$ hold time	<63>	$\mathrm{t}_{\text {RSH }}$		$(1.5+$ WDA $) T-10$		ns
Column address read time (from $\overline{\mathrm{RAS}} \uparrow$)	<64>	tral		$(2+W C P+$ WDA $)$ T - 10		ns
$\overline{\mathrm{CAS}}$ pulse width	<65>	tcas		$(1+$ WDA $) T-10$		ns
$\overline{\mathrm{CAS}}$ precharge time	<81>	tcp		$(1+\mathrm{wCP}) \mathrm{T}-10$		ns
$\overline{\mathrm{RAS}}$ hold time for $\overline{\mathrm{CAS}}$ precharge	<83>	trhCP		$\begin{gathered} (2.5+W C P+W D A) T \\ -10 \end{gathered}$		ns
$\overline{\text { WE }}$ setup time (to $\overline{\mathrm{CAS}} \downarrow$)	<84>	twcs	WCP ≥ 1	wCPT - 10		ns
$\overline{\mathrm{WE}}$ hold time (from $\overline{\mathrm{CAS}} \downarrow$)	<85>	twch		$(1+\mathrm{WDA}) \mathrm{T}-10$		ns
Data setup time (to $\overline{\mathrm{CAS}} \downarrow$)	<86>	tos		$(0.5+$ WCP) $T-10$		ns
Data hold time (from $\overline{\text { CAS }} \downarrow$)	<87>	tD		$(1.5+$ WDA $) T-10$		ns
$\overline{\text { WE }}$ read time (from $\overline{\mathrm{RAS}} \uparrow$)	<88>	trwL	$\mathrm{WCP}=0$	$(1.5+$ WDA $) T-10$		ns
$\overline{\text { WE }}$ read time (from $\overline{\mathrm{CAS}} \uparrow$)	<89>	tcwL	$\mathrm{WCP}=0$	$(1+\mathrm{WDA}) \mathrm{T}-10$		ns
Data setup time (to $\overline{\mathrm{WE}} \downarrow$)	<90>	toswe	$\mathrm{WCP}=0$	$0.5 \mathrm{~T}-10$		ns
Data hold time (from $\overline{\mathrm{WE}} \downarrow$)	<91>	tohwe	$\mathrm{WCP}=0$	$(1.5+$ WDA $) T-10$		ns
$\overline{\text { WE }}$ pulse width	<92>	twp	$\mathrm{WCP}=0$	$(1+\mathrm{WDA}) \mathrm{T}-10$		ns

Remarks 1. $\mathrm{T}=\mathrm{tc} \mathrm{Yk}$
2. wCP: The number of waits due to the CPCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
3. WDA: The number of waits due to the DACxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
(d) Write timing (high-speed page DRAM access: on-page) (2/2)

$\overline{\text { WAIT }}$ (Input)

Remarks 1. This is the timing for the following case ($n=0$ to $3, x x=00$ to 03,10 to 13).
Number of waits due to the CPCxx bit of the DRCn register (TCPW): 1
Number of waits due to the DACxx bit of the DRCn register (TDAW): 1
2. The broken lines indicate high impedance.
3. $n=3$ to 5
(e) Read timing (EDO DRAM) (1/3)

Parameter		Symbol		Condition	MIN.	MAX.	Unit
Data input setup time (to CLKOUT \uparrow)		<26>	tSKID		18		ns
Data input hold time (from CLKOUT \uparrow)		<27>	thKid		2		ns
Delay time from $\overline{\mathrm{OE}} \uparrow$ to data output		<37>	tordod		$(0.5+\mathrm{i}) \mathrm{T}-10$		ns
Row address setup time		<56>	tasr		$(0.5+$ WRP $)$ T - 10		ns
Row address hold time		<57>	$t_{\text {RAH }}$		$(0.5+$ WRн $)$ T - 10		ns
Column address setup time		<58>	tasc		$0.5 \mathrm{~T}-10$		ns
Column address hold time		<59>	tcan		$(0.5+$ WDA $)$ T - 10		ns
$\overline{\text { RAS }}$ precharge time		<61>	$t_{\text {RP }}$		$(0.5+$ WRP $)$ T - 10		ns
Column address read time (from $\overline{\mathrm{RAS}} \uparrow$)		<64>	tral		$(2+W C P+$ WDA $) T-10$		ns
$\overline{\mathrm{CAS}}-\overline{\text { RAS }}$ precharge time		<66>	tcre		$(1+\mathrm{WRP}) \mathrm{T}-10$		$n s$
$\overline{\mathrm{CAS}}$ hold time		<67>	tcser		$\left(1.5+\right.$ WRH $^{+}$WDA $) T-10$		ns
$\overline{\text { WE }}$ setup time (to $\overline{\mathrm{CAS}} \downarrow$)		<68>	trcs		$\left(2+W_{R P}+W_{R H}\right) T-10$		ns
$\overline{\mathrm{WE}}$ hold time (from $\overline{\mathrm{RAS}} \uparrow$)		<69>	tRRH		0.5T-10		$n s$
$\overline{\mathrm{WE}}$ hold time (from $\overline{\mathrm{CAS}} \uparrow$)		<70>	tren		$1.5 \mathrm{~T}-10$		ns
$\overline{\text { RAS }}$ access time		<73>	$t_{\text {RAC }}$			$(2+$ WRH + WDA $) T-28$	ns
Access time from column address		<74>	$t_{A A}$			$(1.5+$ WDA $)$ T - 28	ns
$\overline{\text { CAS }}$ access time		<75>	tcac			$(1+$ WDA $) T-28$	ns
Delay time from $\overline{\mathrm{RAS}}$ to column address		<76>	$t_{\text {Rad }}$		$(0.5+$ WRн $)$ T - 10		ns
$\overline{\mathrm{RAS}}-\overline{\mathrm{CAS}}$ delay time		<77>	$t_{\text {RCD }}$		$(1+$ WRн $) T-10$		ns
Output buffer turn-off delay time (from OE)		<78>	toez		0		ns
Access time from $\overline{\mathrm{CAS}}$ precharge		<80>	tACP			$(1.5+\mathrm{WCP}+\mathrm{WDA}) \mathrm{T}-28$	ns
$\overline{\mathrm{CAS}}$ precharge time		<81>	tcp		(0.5 + WCP) T-10		ns
$\overline{\mathrm{RAS}}$ hold time for $\overline{\mathrm{CAS}}$ precharge		<83>	$\mathrm{t}_{\mathrm{RHCP}}$		$(2+W C P+W D A) T-10$		ns
Read cycle time		<93>	thPC		$(1+W D A+W C P) T-10$		ns
$\overline{\mathrm{RAS}}$ pulse width		<94>	$t_{\text {RASP }}$		$(2.5+$ WRH + WDA $)$ T - 10		ns
$\overline{\mathrm{CAS}}$ pulse width		<95>	thcas		$(0.5+$ WDA $) T-10$		ns
$\overline{\mathrm{CAS}}$ hold time from $\overline{\mathrm{OE}}$	Off-page	<96>	toch1		$\left(2+W_{\text {RH }}+\right.$ WDA $) T-10$		ns
	On-page	<97>	toch2		$(0.5+$ WDA $) T-10$		ns
Data input hold time (from $\overline{\text { CAS }} \downarrow$)		<98>	tohc		0		ns

Remarks 1. $\mathrm{T}=\mathrm{tc} \mathrm{Yk}$
2. WRP: The number of waits due to the RPCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
3. WRH: The number of waits due to the RHCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
4. WDA: The number of waits due to the DACxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
5. WCP : The number of waits due to the CPCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
6. i: The number of idle states that are inserted when a write cycle follows a read cycle.
(e) Read timing (EDO DRAM) (2/3)

Parameter		Symbol		Condition	MIN.	MAX.
Output enable access time	Off-page	$<99>$	toEA1			$(2+$ WRP + WRH + WDA $) T$ -28

Remarks 1. $\mathrm{T}=$ tcyk
2. WRP: The number of waits due to the RPCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
3. WRH: The number of waits due to the RHCxx bit of the DRCn register ($\mathrm{n}=0$ to $3, \mathrm{xx}=00$ to 03,10 to 13).
4. WDA: The number of waits due to the DACxx bit of the DRCn register ($\mathrm{n}=0$ to $3, \mathrm{xx}=00$ to 03,10 to 13).
5. WCP: The number of waits due to the CPCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
(e) Read timing (EDO DRAM) (3/3)

Note For on-page access from another cycle during the $\overline{\mathrm{RASn}}$ low-level signal.

Remarks 1. This is the timing for the following case ($n=0$ to 3 , $x x=00$ to 03,10 to 13).
Number of waits due to the RPCxx bit of the DRCn register (TRPW): 1
Number of waits due to the RHCxx bit of the DRCn register (TRHW): 1
Number of waits due to the DACxx bit of the DRCn register (TDAW): 1
Number of waits due to the CPCxx bit of the DRCn register (TCPW): 1
2. The broken lines indicate high impedance.
3. $\mathrm{n}=3$ to 5
[MEMO]
(f) Write timing (EDO DRAM) (1/2)

Parameter		Symbol		Condition	MIN.	MAX.	Unit
Row address setup time		<56>	tasr		$(0.5+$ WRP $)$ T - 10		$n \mathrm{~s}$
Row address hold time		<57>	trat		$(0.5+$ WRH $)$ T - 10		ns
Column address setup time		<58>	tasc		0.5T-10		ns
Column address hold time		<59>	tcah		$(0.5+$ WDA $)$ T - 10		ns
$\overline{\mathrm{RAS}}$ precharge time		<61>	tRP		$(0.5+$ WRP $)$ T - 10		$n \mathrm{~s}$
$\overline{\mathrm{RAS}}$ hold time		<63>	trsh		$(1.5+$ WDA $) T-10$		ns
Column address read time (from $\overline{\mathrm{RAS}} \uparrow$)		<64>	tral		$(2+W C P+W D A) T-10$		ns
$\overline{\text { CAS }- \text { RAS }}$ precharge time		<66>	tcRP		$(1+$ WRP $) T-10$		ns
$\overline{\mathrm{CAS}}$ hold time		<67>	tcsh		$(1.5+$ WRH + WDA $)$ T - 10		ns
Delay time from $\overline{\mathrm{RAS}}$ to column address		<76>	trad		$(0.5+$ WRн $)$ T - 10		ns
$\overline{\text { RAS }}-\overline{\mathrm{CAS}}$ delay time		<77>	trCD		$(1+$ WRH $)$ T - 10		ns
$\overline{\mathrm{CAS}}$ precharge time		<81>	tcp		$(0.5+$ WCP) $T-10$		ns
$\overline{\mathrm{RAS}}$ hold time for $\overline{\mathrm{CAS}}$ precharge		<83>	$\mathrm{t}_{\mathrm{RHCP}}$		$(2+W C P+W D A) T-10$		ns
$\overline{\text { WE }}$ hold time (from $\overline{\text { CAS }} \downarrow$)		<85>	twCH		$(1+$ WDA $) T-10$		ns
Data hold time (from $\overline{\mathrm{CAS}} \downarrow$)		<87>	toh		$(0.5+$ WDA $)$ T - 10		ns
$\overline{W E}$ read time (from RAS \uparrow)	On-page	<88>	trwL	$\mathrm{WCP}=0$	$(1.5+$ WDA $) T-10$		ns
WE read time (from CAS \uparrow)	On-page	<89>	tcwL	$W C P=0$	$(0.5+$ WDA $)$ T - 10		ns
$\overline{\text { WE pulse width }}$	On-page	<92>	twp	$W C P=0$	$(1+\mathrm{WDA}) \mathrm{T}-10$		ns
Write cycle time		<93>	thPC		$(1+W D A+W C P) T-10$		ns
$\overline{\text { RAS }}$ pulse width		<94>	trasp		$(2.5+$ WRH + WDA $)$ T - 10		ns
$\overline{\mathrm{CAS}}$ pulse width		<95>	thcas		$(0.5+$ WDA $)$ T - 10		ns
WE setup time (to CAS \downarrow)	Off-page	<101>	twcs1		$\left(1+W_{R P}+W_{R H}\right) T-10$		ns
	On-page	<102>	twcs2	$W C P \geq 1$	WCPT - 10		ns
Data setup time (to $\overline{\mathrm{CAS}} \downarrow$)	Off-page	<103>	tDS1		$(1.5+$ WRP + WRH)T-10		ns
	On-page	<104>	tDS2		$(0.5+$ WCP) $T-10$		ns

Remarks 1. $\mathrm{T}=\mathrm{tc} \mathrm{Yk}$
2. wRP: The number of waits due to the RPCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
3. WRH: The number of waits due to the RHCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
4. WDA: The number of waits due to the DACxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
5. wCP : The number of waits due to the CPCxx bit of the DRCn register ($\mathrm{n}=0$ to $3, \mathrm{xx}=00$ to 03,10 to 13).
(f) Write timing (EDO DRAM) (2/2)

Remarks 1. This is the timing for the following case ($n=0$ to $3, x x=00$ to 03,10 to 13).
Number of waits due to the RPCxx bit of the DRCn register (TRPW): 1
Number of waits due to the RHCxx bit of the DRCn register (TRHW): 1
Number of waits due to the DACxx bit of the DRCn register (TDAW): 1
Number of waits due to the CPCxx bit of the DRCn register (TCPW): 1
2. The broken lines indicate high impedance.
3. $\mathrm{n}=3$ to 5
(g) DMA flyby transfer timing (DRAM (EDO, high-speed page) \rightarrow external I/O transfer) (1/3)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
$\overline{\text { WAIT }}$ setup time (to CLKOUT \downarrow)	<24>	tswk		15		ns
$\overline{\text { WAIT }}$ hold time (from CLKOUT \downarrow)	<25>	thкw		2		ns
Delay time from $\overline{\mathrm{OE}} \uparrow$ to data output	<37>	tordod		$(0.5+\mathrm{i}) \mathrm{T}-10$		ns
Delay time from address to $\overline{\mathrm{IOWR}} \downarrow$	<41>	tdawr		(0.5 + WRP) $\mathrm{T}-10$		ns
Address setup time (to $\overline{\overline{\mathrm{IOWR}} \uparrow \text {) }}$	<42>	tsawr		$\begin{gathered} \left(2+w_{R P}+w_{R H}+w_{D A}+\right. \\ w) T-10 \end{gathered}$		ns
Delay time from $\overline{\mathrm{IOWR}} \uparrow$ to address	<43>	towra		0.5T-10		ns
Delay time from $\overline{\mathrm{IOWR}} \uparrow$ to $\overline{\mathrm{RD}} \uparrow$	<48>	towrrd	WF $=0$	0		ns
			WF $=1$	T-10		ns
$\overline{\text { IOWR }}$ low-level width	<50>	twwRL		$\begin{gathered} (2+w R H+w D A+w) T \\ -10 \end{gathered}$		ns
Row address setup time	<56>	tASR		$(0.5+$ WRP $) T-10$		ns
Row address hold time	<57>	trah		$\left(0.5+\right.$ WRH $^{\text {a }}$ T -10		ns
Column address setup time	<58>	tasc		0.5T-10		ns
Column address hold time	<59>	tcar		$\begin{gathered} \left(1.5+W_{D A}+W_{F}+w\right) T \\ -10 \end{gathered}$		ns
Read/write cycle time	<60>	trc		$\begin{gathered} \left(3+W_{R P}+W_{R H}+\text { WDA }+\right. \\ \left.W_{F}+w\right) T-10 \end{gathered}$		ns
$\overline{\mathrm{RAS}}$ precharge time	<61>	$t_{\text {RP }}$		$(0.5+$ WRP $)$ T - 10		ns
$\overline{\mathrm{RAS}}$ hold time	<63>	$\mathrm{trSH}^{\text {r }}$		$\begin{gathered} \left(1.5+W_{D A}+w_{F}+w\right) T \\ -10 \end{gathered}$		ns
Column address read time for RAS	<64>	tral		$\begin{gathered} \left(2+W_{C P}+W_{D A}+W_{F}+\right. \\ w) T-10 \end{gathered}$		ns
$\overline{\mathrm{CAS}}$ pulse width	<65>	tcas		$\begin{gathered} \left(1+W D A+W_{F}+w\right) T \\ -10 \end{gathered}$		ns
$\overline{\mathrm{CAS}}-\overline{\mathrm{RAS}}$ precharge time	<66>	tcRP		$(1+\mathrm{WRP}) \mathrm{T}-10$		ns
$\overline{\mathrm{CAS}}$ hold time	<67>	tcsi		$\begin{gathered} \left(2+W_{R H}+W_{D A}+w_{F}+\right. \\ w) T-10 \end{gathered}$		ns

Remarks 1. $\mathrm{T}=\mathrm{tc} \mathrm{Yk}$
2. w: The number of waits due to $\overline{\text { WAIT. }}$
3. WRP: The number of waits due to the RPCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
4. WRH: The number of waits due to the RHCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
5. WDA: The number of waits due to the DACxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
6. wCP : The number of waits due to the CPCxx bit of the DRCn register ($\mathrm{n}=0$ to $3, \mathrm{xx}=00$ to 03,10 to 13).
7. WF: The number of waits that are inserted for a source-side access during a DMA flyby transfer.
8. i: The number of idle states that are inserted when a write cycle follows a read cycle.
(g) DMA flyby transfer timing (DRAM (EDO, high-speed page) \rightarrow external I/O transfer) (2/3)

Parameter		Symbol		Condition	MIN.	MAX.	Unit
$\overline{\text { WE }}$ setup time (to $\overline{\mathrm{CAS}} \downarrow$)		<68>	tres		$(2+W R P+W R H) T-10$		ns
$\overline{\mathrm{WE}}$ hold time (from $\overline{\mathrm{RAS}} \uparrow$)		<69>	trRH		0.5T-10		ns
$\overline{\mathrm{WE}}$ hold time (from $\overline{\mathrm{CAS}} \uparrow$)		<70>	trch		$1.5 \mathrm{~T}-10$		ns
$\overline{\mathrm{CAS}}$ precharge time		<71>	tcPn		(2 + WRP + WRH)T-10		ns
Delay time from $\overline{\mathrm{RAS}}$ to column address		<76>	$t_{\text {RAD }}$		$(0.5+$ WRH $)$ T - 10		ns
$\overline{\text { RAS }}$ - $\overline{C A S}$ delay time		<77>	$t_{\text {RCD }}$		$\left(1+\right.$ WRH $\left.^{\prime}\right) T-10$		ns
Output buffer turn-off delay time (from $\overline{\mathrm{OE}} \uparrow$)		<78>	toez		0		ns
Output buffer turn-off delay time (from $\overline{\mathrm{CAS}} \uparrow$)		<79>	toff		0		ns
$\overline{\mathrm{CAS}}$ precharge time		<81>	tcp		$(0.5+\mathrm{WCP}) \mathrm{T}-10$		ns
High-speed page mode cycle time		<82>	tpc		$\begin{gathered} \left(2+w_{C P}+w_{D A}+w_{F}+w\right) T \\ -10 \end{gathered}$		ns
$\overline{\mathrm{RAS}}$ hold time for $\overline{\mathrm{CAS}}$ precharge		<83>	trhcp		$\begin{gathered} \left(2.5+W_{C P}+\text { WDA }^{2}+W_{F}+w\right) T \\ -10 \end{gathered}$		ns
$\overline{\mathrm{RAS}}$ pulse width		<94>	trasp		$\begin{gathered} \left(2.5+w_{R H}+w_{D A}+w_{F}+w_{)}\right) T \\ -10 \end{gathered}$		ns
$\overline{\mathrm{CAS}}$ hold time from $\overline{\mathrm{OE}}$ (from CAS \uparrow)	Off-page	<96>	toch1		$\begin{gathered} \left(2.5+W_{R P}+W_{R H}+W_{D A}+\right. \\ \left.W_{F}+w\right) T-10 \end{gathered}$		ns
	On-page	<97>	toch2		$\begin{gathered} \left(1.5+W_{C P}+W_{D A}+W_{F}+w\right) T \\ -10 \end{gathered}$		ns
Delay time from $\overline{\text { DMAAKm }} \downarrow$ to $\overline{\mathrm{CAS}} \downarrow$		<105>	todacs		$(1.5+$ WRH $) T-10$		ns
Delay time from $\overline{\mathrm{IOWR}} \downarrow$ to $\overline{\mathrm{CAS}} \downarrow$		<106>	tordcs		$\left(1+\right.$ WRH $\left.^{\prime}\right) T-10$		ns

Remarks 1. $\mathrm{T}=\mathrm{t} \mathrm{t} \mathrm{Yk}$
2. w: The number of waits due to $\overline{\text { WAIT. }}$
3. wCP: The number of waits due to the CPCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
4. WDA: The number of waits due to the DACxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
5. WRH: The number of waits due to the RHCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
6. WRP: The number of waits due to the RPCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
7. WF: The number of waits that are inserted for a source-side access during a DMA flyby transfer.
8. $m=0$ to 3
(g) DMA flyby transfer timing (DRAM (EDO, high-speed page) \rightarrow external I/O transfer) (3/3)

Remarks 1. This is the timing for the following case ($n=0$ to $3, x x=00$ to 03,10 to 13).
Number of waits due to the RPCxx bit of the DRCn register (TRPW): 1
Number of waits due to the RHCxx bit of the DRCn register (TRHW): 1
Number of waits due to the DACxx bit of the DRCn register (TDAW): 1
Number of waits due to the CPCxx bit of the DRCn register (TCPW): 1
Number of waits that are inserted for a source-side access during a DMA flyby transfer: 0
2. The broken lines indicate high impedance.
3. $\mathrm{n}=3$ to $5, \mathrm{~m}=0$ to 3
(h) DMA flyby transfer timing (external I/O \rightarrow DRAM (EDO, high-speed page) transfer) (1/3)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
$\overline{\text { WAIT }}$ setup time (to CLKOUT \downarrow)	<24>	tswk		15		ns
$\overline{\text { WAIT }}$ hold time (from CLKOUT \downarrow)	<25>	thkw		2		ns
$\overline{\text { IORD }}$ low-level width	<32>	twRDL		$\left(2+W_{R H}+W_{D A}+W_{F}+w\right) T-10$		ns
$\overline{\text { IORD }}$ high-level width	<33>	twrdh		T-10		ns
Delay time from address to $\overline{\mathrm{IORD}} \uparrow$	<34>	tDard		0.5T-10		ns
Delay time from $\overline{\mathrm{IORD}} \uparrow$ to address	<35>	tDRDA		$(0.5+\mathrm{i}) \mathrm{T}-10$		ns
Row address setup time	<56>	tASR		$(0.5+$ WRP $)$ T - 10		ns
Row address hold time	<57>	trah		$(0.5+$ WRH $)$ T - 10		ns
Column address setup time	<58>	tasc		$0.5 \mathrm{~T}-10$		ns
Column address hold time	<59>	tcan		$(1.5+W D A+W F) T-10$		ns
Read/write cycle time	<60>	trc		$\begin{gathered} (3+W R P+W R H+W D A+W F+w) T \\ -10 \end{gathered}$		ns
$\overline{\mathrm{RAS}}$ precharge time	<61>	trP		$(0.5+$ WRP $)$ T - 10		ns
$\overline{\mathrm{RAS}}$ hold time	<63>	trsh		$(1.5+W D A+W F) T-10$		ns
Column address read time for $\overline{\mathrm{RAS}}$	<64>	$t_{\text {RAL }}$		$(2+W C P+W D A+W F+w) T-10$		ns
$\overline{\mathrm{CAS}}$ pulse width	<65>	tcas		$(1+W D A+W F) T-10$		ns
$\overline{\mathrm{CAS}}-\overline{\mathrm{RAS}}$ precharge time	<66>	tcre		$(1+\mathrm{WRP}) \mathrm{T}-10$		ns
$\overline{\mathrm{CAS}}$ hold time	<67>	tcse		$(2+W R H+W D A+W F+w) T-10$		ns
$\overline{\mathrm{CAS}}$ precharge time	<71>	tCPN		$(2+W R P+W R H+w) T-10$		ns
Delay time from $\overline{\mathrm{RAS}}$ to column address	<76>	trad		$(0.5+$ WRH $)$ T - 10		ns
$\overline{\text { RAS }}$ - $\overline{C A S}$ delay time	<77>	trci		$(1+\mathrm{WRH}+\mathrm{w}) \mathrm{T}-10$		ns
$\overline{\mathrm{CAS}}$ precharge time	<81>	tcp		$(0.5+w C P+w) T-10$		ns
High-speed page mode cycle time	<82>	tpc		$(2+W C P+W D A+W F+W) T-10$		ns
$\overline{\mathrm{RAS}}$ hold time for $\overline{\text { CAS }}$ precharge	<83>	$\mathrm{t}_{\mathrm{RHCP}}$		$(2.5+W C P+W D A+w) T-10$		ns
$\overline{\text { WE }}$ hold time (from $\overline{\mathrm{CAS}} \downarrow$)	<85>	twch		$(1+\mathrm{WDA}) \mathrm{T}-10$		ns
$\overline{\mathrm{WE}}$ read time (from $\overline{\mathrm{RAS}} \uparrow$)	<88>	trwL	$W C P=0$	$(1.5+W D A+w) T-10$		ns

Remarks 1. $\mathrm{T}=\mathrm{tc} \mathrm{Yk}$
2. w: The number of waits due to $\overline{\text { WAIT. }}$
3. WRH: The number of waits due to the RHCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
4. WDA: The number of waits due to the DACxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
5. WRP: The number of waits due to the RPCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
6. $w C P$: The number of waits due to the CPCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
7. WF: The number of waits that are inserted for a source-side access during a DMA flyby transfer.
8. i: The number of idle states that are inserted when a write cycle follows a read cycle.
(h) DMA flyby transfer timing (external I/O \rightarrow DRAM (EDO, high-speed page) transfer) (2/3)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
$\overline{\mathrm{WE}}$ read time (from $\overline{\mathrm{CAS}} \uparrow$)	<89>	tow	$\mathrm{WCP}=0$	$(1+w D A+w) T-10$		ns
WE pulse width	<92>	twp	$\mathrm{WCP}=0$	$(1+$ WDA +w$) \mathrm{T}-10$		ns
$\overline{\text { RAS }}$ pulse width	<94>	trasp				ns
$\overline{\text { WE }}$ setup time (to $\overline{\text { CAS }} \downarrow$)	<101>	twcs1	$\mathrm{WCP}=0$	$\left(1+w_{R H}+w_{R P}+w^{\prime}\right)$ - 10		ns
	<102>	twcs2	WCP ≥ 1	WCPT-10		ns
Delay time from $\overline{\text { DMAAKm }} \downarrow$ to CAS \downarrow	<105>	tddacs		$\left(1.5+W_{\text {RH }}+\mathrm{w}^{\prime} \mathrm{T}-10\right.$		ns
Delay time from $\overline{\text { IORD }} \downarrow$ to $\overline{\mathrm{CAS}} \downarrow$	<106>	tordcs		$\left(1+\mathrm{wRH}^{+} \mathrm{w}\right) \mathrm{T}-10$		ns
Delay time from $\overline{\mathrm{WE}} \uparrow$ to $\overline{\text { IORD } \uparrow}$	<107>	towerd	WF $=0$	0		ns
			$\mathrm{W}_{\mathrm{F}}=1$	T-10		ns

Remarks 1. $\mathrm{T}=\mathrm{tcyk}$
2. w : The number of waits due to $\overline{\text { WAIT. }}$
3. WRH: The number of waits due to the RHCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
4. WDA: The number of waits due to the DACxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
5. WRP: The number of waits due to the RPCxx bit of the DRCn register ($n=0$ to $3, x x=00$ to 03,10 to 13).
6. WCP : The number of waits due to the CPCxx bit of the DRCn register ($\mathrm{n}=0$ to $3, \mathrm{xx}=00$ to 03,10 to 13).
7. W : The number of waits that are inserted for a source-side access during a DMA flyby transfer.
8. $m=0$ to 3
(h) DMA flyby transfer timing (external I/O \rightarrow DRAM (EDO, high-speed page) transfer) (3/3)

Remarks 1. This is the timing for the following case ($n=0$ to $3, x x=00$ to 03,10 to 13).
Number of waits due to the RPCxx bit of the DRCn register (TRPW): 1
Number of waits due to the RHCxx bit of the DRCn register (TRHW): 1
Number of waits due to the DACxx bit of the DRCn register (TDAW): 1
Number of waits due to the CPCxx bit of the DRCn register (TCPW): 1
Number of waits that are inserted for a source-side access during a DMA flyby transfer: 0
2. The broken lines indicate high impedance.
3. $\mathrm{n}=3$ to $5, \mathrm{~m}=0$ to 3

(i) CBR refresh timing

Parameter	Symbol		Condition	MIN.	MAX.	Unit
RAS precharge time	<61>	tRP		$(1.5+$ WRRW $) T-10$		ns
RAS pulse width	<62>	tras		$\left(1.5+\right.$ Wrcw $\left.^{\text {Note }}\right) \mathrm{T}-10$		ns
CAS hold time	<108>	tchr		$\left(1.5+\right.$ Wrcw $\left.^{\text {Note }}\right) \mathrm{T}-10$		ns
$\overline{\mathrm{RAS}}$ precharge $\overline{\mathrm{CAS}}$ hold time	<110>	trPC		(0.5 + WRRW) T - 10		ns
$\overline{\text { CAS }}$ setup time	<113>	tcsr		T-10		ns

Note At least one clock cycle is inserted by default for wRCw regardless of the settings of the RCW0 to RCW2 bits of the RWC register.

Remarks 1. $\mathrm{T}=\mathrm{tc} \mathrm{Yk}$
2. WRRW: The number of waits due to the RRW0 and RRW1 bits of the RWC register.
3. WRCW: The number of waits due to the RCW0 to RCW2 bits of the RWC register.

Note This TRCW is always inserted regardless of the settings of the RCW0 to RCW2 bits of the RWC register.

Remarks 1. This is the timing for the following case.
Number of waits due to the RRW0 and RRW1 bits of the RWC register (TRRW): 1
Number of waits due to the RCW0 to RCW2 bits of the RWC register (TRCW): 2
2. $\mathrm{n}=3$ to 5
(j) CBR self-refresh timing

Parameter	Symbol		Condition	MIN.	MAX.	Unit
$\overline{\text { CAS }}$ hold time	$<114>$	tchs		-5	ns	
$\overline{\text { RAS }}$ precharge time	$<115>$	trPs		$(1+2 w s R w) T-10$		

Remarks 1. $\mathrm{T}=\mathrm{t}$ ţk
2. wsRw: The number of waits due to the SRWO to SRW 2 bits of the RWC register.

(7) DMAC timing

Parameter	Symbol		Condition	min.	MAX.	Unit
	<116>	tsork		15		ns
$\overline{\text { DMARQn }}$ hold time (from CLKOUT \uparrow)	<117>	tHKDR1		2		ns
	<118>	tHKDR2		Until $\overline{\text { DMAAKn }} \downarrow$		ns
$\overline{\text { DMAAKn }}$ output delay time (from CLKOUT \downarrow)	<119>	tokia		2	10	ns
$\overline{\text { DMAAKn }}$ output hold time (from CLKOUT \downarrow)	<120>	tHKDA		2	10	ns
$\overline{\mathrm{TCn}}$ output delay time (from CLKOUT \downarrow)	<121>	toktc		2	10	ns
$\overline{\mathrm{TCn}}$ output hold time (from CLKOUT \downarrow)	<122>	tнктс		2	10	ns

Remark $\mathrm{n}=0$ to 3

(8) Bus hold timing (1/2)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
$\overline{\text { HLDRQ }}$ setup time (to CLKOUT \uparrow)	<123>	tshrk		15		ns
HLDRQ hold time (from CLKOUT \uparrow)	<124>	tHKHR		2		ns
Delay time from CLKOUT \downarrow to $\overline{\text { HLDAK }}$	<125>	tDKHA		2	10	ns
HLDRQ high-level width	<126>	twhor		T+17		ns
$\overline{\text { HLDAK }}$ low-level width	<127>	twhal		T-8		ns
Delay time from $\overline{\text { CLKOUT }} \downarrow$ to bus float	<128>	tokcF			10	ns
Delay time from $\overline{\operatorname{HLDAK}} \uparrow$ to bus output	<129>	tDhac		0		ns
Delay time from $\overline{\mathrm{HLDRQ}} \downarrow$ to $\overline{\text { HLDAK }} \downarrow$	<130>	tDHQHA1		2.5T		ns
Delay time from $\overline{H L D R Q} \uparrow$ to $\overline{\text { HLDAK }} \uparrow$	<131>	tDHQHA2		0.5T	1.5T	ns

Remark $\mathrm{T}=\mathrm{tc} \mathrm{Y} \mathrm{K}$
(8) Bus hold timing (2/2)

Remarks 1. The broken lines indicate high impedance.
2. $\mathrm{n}=0,3$ to $5, \mathrm{~m}=3$ to 5

(9) Interrupt timing

Parameter	Symbol		Condition	MIN.	MAX.	Unit
NMI high-level width	$<132>$	twNIH		500	ns	
NMI low-level width	$<133>$	twNIL		500	ns	
INTPn high-level width	$<134>$	twith		$4 T+10$	ns	
INTPn low-level width	$<135>$	twITL		$4 T+10$	ns	

Remarks 1. $\mathrm{n}=100$ to 103,110 to 113,130
2. $\mathrm{T}=\mathrm{t} \mathrm{CY} \mathrm{K}$

(10) RPU timing

Parameter	Symbol		Condition	MIN.	MAX.	Unit
TI13 high-level width	$<136>$	twTIH		$3 T+18$	ns	
TI13 low-level width	$<137>$	twTIL		$3 T+18$		
TCLR1n high-level width	$<138>$	twTCH		$3 T+18$	ns	
TCLR1n low-level width	$<139>$	twTCL		$3 T+18$	ns	

Remarks 1. $\mathrm{n}=0$ to 2
2. $\mathrm{T}=\mathrm{t} \mathrm{CY} \mathrm{K}$

(11) UART0, UART1 timing (clock-synchronized or master mode only)

Parameter	Symbol		Condition	MIN.	MAX.	Unit
$\overline{\text { SCKn }}$ cycle	<140>	tcrsko	Output	250		ns
$\overline{\text { SCKn }}$ high-level width	<141>	twskor	Output	0.5tcysko - 20		ns
$\overline{\text { SCKn }}$ low-level width	<142>	twskol	Output	0.5tcysko - 20		ns
RXDn setup time (to $\overline{\text { SCKn }} \uparrow$)	<143>	tsrxsk		30		ns
RXDn hold time (from $\overline{\mathrm{SCKn}} \uparrow$)	<144>	thSkRX		0		ns
TXDn output delay time (from $\overline{\text { SCKn }} \downarrow$)	<145>	tosktx			20	ns
TXDn output hold time (from $\overline{\text { SCKn }} \uparrow$)	<146>	thSkTX		0.5tçSKo - 5		ns

Remark $\mathrm{n}=0,1$

Remarks 1. The broken lines indicate high impedance.
2. $\mathrm{n}=0,1$
(a) Master mode

Parameter	Symbol		Condition	MIN.	MAX.	Unit
$\overline{\text { SCKn }}$ cycle	<147>	tcYSk1	Output	100		ns
$\overline{\text { SCKn }}$ high-level width	<148>	twskin	Output	0.5tcysk1 - 20		ns
SCKn low-level width	<149>	twskiL	Output	0.5tcysk 1 - 20		ns
SIn setup time (to $\overline{\text { SCKn }} \uparrow$)	<150>	tssisk		30		ns
SIn hold time (from $\overline{\mathrm{SCKn}} \uparrow$)	<151>	thsksi		0		ns
SOn output delay time (from $\overline{\text { SCKn }} \downarrow$)	<152>	toskso			20	ns
SOn output hold time (from $\overline{\text { SCKn }} \uparrow$)	<153>	thskso		0.5tcysk 1 - 5		ns

Remark $\mathrm{n}=0,1$

(b) Slave mode

Parameter	Symbol		Condition	MIN.	MAX.	Unit
$\overline{\text { SCKn }}$ cycle	<147>	tcrsk 1	Input	100		ns
$\overline{\text { SCKn }}$ high-level width	<148>	twskih	Input	30		ns
$\overline{\text { SCKn }}$ low-level width	<149>	twskiL	Input	30		ns
SIn setup time (to $\overline{\text { SCKn } \uparrow \text {) }}$	<150>	tssısk		10		ns
SIn hold time (from $\overline{\text { SCKn }} \uparrow$)	<151>	thsksi		10		ns
SOn output delay time (from $\overline{\text { SCKn }} \downarrow$)	<152>	toskso			30	ns
SOn output hold time (from $\overline{\text { SCKn }} \uparrow$)	<153>	thskso		twskih		ns

Remark $\mathrm{n}=0,1$

Remarks 1. The broken lines indicate high impedance.
2. $\mathrm{n}=0,1$

A/D Converter Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VdD}=\mathrm{CVDD}=3.0$ to 3.6 V , HVDD $=5.0 \mathrm{~V} \pm 10 \%$, $\mathrm{Vss}=0 \mathrm{~V}$, HVDD - $0.5 \mathrm{~V} \leq A V_{D D} \leq H V D D$, output pin load capacitance: $C_{L}=50 \mathrm{pF}$)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Resolution	-		10			bit
Overall error	-				± 4	LSB
Quantization error	-				$\pm 1 / 2$	LSB
Conversion time	tconv		5		10	$\mu \mathrm{s}$
Sampling time	tsamp		Conversion clock $^{\text {Note }} / 6$			ns
Zero scale error	-				± 4	LSB
Scale error	-				± 4	LSB
Linearity error	-				± 3	LSB
Analog input voltage	Vian		-0.3		$\mathrm{AV}_{\text {Ref }}+0.3$	V
Analog input resistance	Ran			2		$\mathrm{M} \Omega$
$A V_{\text {REF }}$ input voltage	AV VEFF	$A V_{\text {REF }}=A V_{\text {dD }}$	4.5		5.5	V
$\mathrm{AV}_{\text {ref }}$ input current	Alref				2.0	mA
AVDD current	Aldo				6	mA

Note Conversion clock is the number of clocks set by the ADM1 register.

4. PACKAGE DRAWING

100-PIN PLASTIC LQFP (FINE PITCH) (14x14)

NOTE
Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	16.00 ± 0.20
B	14.00 ± 0.20
C	14.00 ± 0.20
D	16.00 ± 0.20
F	1.00
G	1.00
H	$0.22_{-0.04}^{+0.05}$
I	0.08
J	$0.50($ T.P. $)$
K	1.00 ± 0.20
L	0.50 ± 0.20
M	$0.17_{-0.07}^{+0.03}$
N	0.08
P	1.40 ± 0.05
Q	0.10 ± 0.05
R	$3^{\circ+7^{\circ}}$
S	1.60 MAX.
S100GC-50-8EU, 8EA-2	

5. RECOMMENDED SOLDERING CONDITIONS TBD

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to Vod or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Reference materials Electrical Characteristics for Microcomputer (U15170J ${ }^{\text {Note }}$)

Note This document number is that of Japanese version.

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

V850E/MS1, V850E/MS2, and V850 Family are trademarks of NEC Corporation.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
800-366-9782
Fax: 408-588-6130
800-729-9288
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 0302
Fax: 0211-65 03490
NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
NEC Electronics Italiana s.r.I.
Milano, Italy
Tel: 02-66 7541
Fax: 02-66 754299

NEC Electronics (Germany) GmbH NEC Electronics Hong Kong Ltd.
Benelux Office
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044
NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore
Tel: 253-8311
Fax: 250-3583
NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951
NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP, Brasil
Tel: 11-6462-6810
Fax: 11-6462-6829

- The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

[^0]: The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production.
 Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

